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We present a (mostly) rigorous approach to unbounded and bounded (open)
dilute random Lorentz gases. Relying on previous rigorous results on the dilute
(Boltzmann–Grad) limit we compute the asymptotics of the Lyapunov exponent
in the unbounded case. For the bounded open case in a circular region we give
here an incomplete rigorous analysis which gives the asymptotics for large
radius of the escape rate and of the rescaled ‘‘quasi-invariant’’ (q.i., or ‘‘quasi-
stationary’’) measure. We finally give a complete proof on existence and
asymptotic properties of the q.i. measure in a one-dimensional ‘‘caricature.’’
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1. INTRODUCTION

It is well known that the statistical theory of dynamical systems (ergodic
theory) was created by Boltzmann and Gibbs to address fundamental
problems of kinetic theory and statistical mechanics. Much later the ideas
and methods of the modern theory of dynamical systems (often refered to
as less general and loosely defined chaos theory) were successfully applied
to a large variety of problems in statistical mechanics and kinetic theory.
Continuing these very fruitful developments, methods and approaches of
kinetic theory were recently applied to estimate Lyapunov exponents,



Kolmogorov–Sinai entropy and other dynamical characteristics for various
models of gases and fluids (see refs. 1–5, and references therein).
These approaches employed both, formal and informal, versions of

kinetic theory, which are based on a straightforward (geometric) analysis
of the particle collisions (interactions) and on kinetic equations (dealing
with expansions of their solutions), respectively. (5)

A rigorous approach to the derivation of the Boltzmann equation for
the 2-dimensional unbounded random diluted Lorentz gas, as the Fokker–
Planck–Kolmogorov equation for the Markov limiting process in the
Boltzmann–Grad (BG) limit, (6) was presented in ref. 7. In this paper we
present a mostly rigorous approach to the analysis of unbounded and
bounded (open) dilute random Lorentz gases which is mainly based on the
basic ideas and constructions of ref. 7, which allow to control convergence
to the limiting process for almost all configurations of the scatterers.
Here we first use the limiting process and the corresponding equilib-

rium distribution to compute the Lyapunov exponents for the unbounded
dilute random Lorentz gas. The derivation is not entirely rigorous, the only
gap being that we have to take the Boltzmann–Grad limit first, and only
after that we take (macroscopic) time to infinity. The ‘‘real’’ Lyapunov
exponents correspond instead to taking time to infinity for a fixed scatterer
radius, but for random scatterers this is out of reach of the available
mathematical tools.
We then study the bounded dilute random Lorentz gas with absorbing

(open) boundary conditions, already in terms of the limiting process, in the
particular case when the volume is a circle KR of radius R with center
at the origin. We study the eigenvalue problem for the quasi-invariant
(because of the escape of particles from the region) limiting distribution.
We find the asymptotics for large R of the quasi-invariant distribution and
we also obtain the asymptotics of the escape rate. Such results are in good
agreement with some recent physical results (8) obtained with a different
approach, and we plan to give a more complete analysis in a future paper.
We add a complete proof about existence and asymptotic expansion of
the quasi-invariant measure for a one-dimensional model with exponential
jump distribution.
It is important to mention that, in contrast with the derivation of the

hydrodynamic (diffusion) equation for the Lorentz gas, (9) our analysis does
not use the unstable manifolds (fibers) of the corresponding dynamical
system. Instead one can work with any local manifolds which are transver-
sal to (differ from) stable fibers. Indeed, the kinetic stage of the evolution
of the system deals with finite times, while a hydrodynamic stage deals with
very big (i.e., infinite) times. In this limit tQ. one needs to use unstable
fibers which are limits (as tQ.) of local manifolds transversal to stable

730 Boldrighini et al.



fibers. Thus the analysis of the kinetic stage of the evolution becomes
somewhat easier than that of the hydrodynamic one.
For many results concerning the derivation of the limiting process and

its properties we cannot report here full proofs, which would considerably
increase the size of the paper, and we refer to corresponding proofs of
ref. 7. We are well aware that in some cases those proofs have to be
modified, and we give some indication on the necessary steps. We plan to
publish in the near future an extensive paper with complete proofs.

2. BOLTZMANN–GRAD LIMIT AND LYAPUNOV EXPONENTS

We consider the Lorentz gas in the plane R2 with random configura-
tion of scatterers. The scatterers are circles of radius a, and the ‘‘wind’’
particle has unit speed, so that it is identified by a point (q, k) ¥M, with
M=R2×S1. q=(q1, q2) are the particle coordinates and k

¯
=: (cos k,

sin k), k ¥ S1, is its velocity. The configuration of the scatterer centers is
a point w ¥ W, where W is the space of the locally finite subsets of R2,
endowed with the topology of pointwise convergence. We take a Poisson
measure on (the s-algebra of Borel sets of) W with intensity measure l dq,
with constant scatterer density l > 0. So we allow the scatterers to overlap,
but of course the overlapping disappears in the low density limit. One
could also take other measures with fast decay of correlations, as we briefly
discuss below.
The flow is just free motion with elastic collisions at the boundary of

the scatterers. We repeat here the main points of the construction, which is
given in detail in ref. 7.
In what follows, in order to avoid confusion, we will denote by x ¥ R2

the scatterer centers, and by q the points of the plane accessible to the
‘‘wind’’ particle. Assuming that at collision times the particle has the out-
going velocity, if Da(x) denotes the (open) circle (scatterer) with center x,
a particle colliding with it is represented by a point in Ka(x)={(q, k):
q ¥ “Da(x), (q−x) ·k \ 0}. The part of the plane covered by the scatterers
is Sa, w=1x ¥ w Da(x). We need to exclude from its boundary “Sa, w the
‘‘angular points,’’ which belong to more than one scatterer, i.e., the set
“
−Sa, w=1x, xŒ ¥ w, x ] xŒ {“Da(x) 5 “Da(x −)}, for which elastic reflection is not
defined. The set of the admissible collision points is then

Ha, w=3(q, k) ¥ 0
x ¥ w
Ka(x), q ¥ “gSa, w 4 ,

with “gSa, w=“Sa, w0“ −Sa, w. What is left is the space Ma, w=(R20Sa, w)×
S1 2Ha, w, from which we have to remove all points (q, k) such that the
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trajectory, for some positive or negative t ends up at an angular point in
“
−Sa, w. It is easy to see that this set has zero Lebesgue measure, and denot-
ing byM −

a, w the remaining set, we take it as the phase space of our system.
The dynamics onM −

a, w is a flow denoted {T
a, w
t , t ¥ R

1}, and the superscript
a, w will be often omitted.
For the BG limit it is convenient to assume the ‘‘mesoscopic picture’’

(see ref. 7), which allows to keep the configuration w of the scatterer
centers fixed, as we take the limit aQ 0. The ‘‘microscopic scale’’ would be
the one for which the scatterer radius is fixed, and the density of the scat-
terers vanishes, and the ‘‘macroscopic’’ description, which is of main inter-
est to us, is the one in which the free flight length is finite. As in the meso-
scopic picture the free flight is of order a−1, the macroscopic unit of length
(and of time) is taken a−1 times larger than the mesoscopic one.
We introduce the discrete map Twa : M

−

a, w QHa, w 2 0̄, where 0̄ repre-
sents the absence of collision (i.e., the particle escapes at infinity). It is easy
to see (see ref. 7) that the points of M −

a, w which are mapped into 0̄ have
zero Lebesgue measure in the unbounded case, but this is of course not true
in the bounded open case. If a collision takes place, i.e., Twa (q, k)=
(q −, k −) ¥Ha, w, we denote by ywa (q, k)=a |q

−−q| the (macroscopic) length
of the free path, and by bwa (q, k)=sin f ¥ [−1, 1], where f is the collision
angle (the angle of the outgoing velocity with the outer normal at the colli-
sion point), the impact parameter of the collision, i.e., the distance between
the semiinfinite straight line starting at q in the direction k and the center
of the scatterer with which the collision takes place, taken with positive
(negative) sign if the center is on the right (left) side of the line, and divided
by the scatterer radius a. By the law of elastic collision the direction of
flight changes to

k −=k+p+2 arcsin (bwa )=k+p+2f. (1)

A point (q, k) ¥Ka(x) representing a particle colliding with the scat-
terer at x can be written as (q, k)=(x+ah

¯
, h+f), where h

¯
=(cos h, sin h),

h ¥ S1, and f ¥ [− p2 ,
p

2] is the collision angle. In this way Ka(x) is identified
with a cylinder S1×[− p2 ,

p

2]. As we said in the introduction one does not
need to work with the unstable manifolds, and it is enough to work with
some convenient local manifolds. Such are the ‘‘increasing curves’’ on the
cylinders Ka(x) introduced in ref. 7, i.e., smooth curves f(h) such that
f −(h) > 0. It is not hard to see that increasing curves are mapped by Twa
into increasing curves, more precisely if c …Ka(x) is an increasing curve on
which Twa is continuous and c − …Ka(x −) is its image, then c − is given in
terms of the coordinates (h1, f1) on Ka(x −) by the equation

df1
dh1
=1+

cos f1(a−2y
w
a+

cos f

1+fŒ
)−1, and therefore is also increasing. This is the key
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factor that ensures, for almost all w ¥ W, a kind of ‘‘propagation of chaos,’’
and convergence to the limiting Markov process.
The main result, following ref. 7, can be stated in the following terms.

Let w be fixed, and consider a bundle DE={(q, h): h ¥ (hg− E, hg+E)},
assuming that q ¨ w (so that q does not belong to a scatterer for a small),
and E=E(a) > aa for some a ¥ [0, 1). Let mE(dh) denote the normalized
Lebesgue measure on DE, and y1(h), y2(h),... and b1(h), b2(h),... the
sequence of free flight lengths and impact parameters of the trajectories
starting at q with direction h. The following result is proved in ref. 7 for the
unbounded case.

Proposition 1. For almost all w ¥ W, the joint distribution of
y1, b1, y2, b2,... induced by the measure mE(dh) on DE tends weakly as aQ 0
to the limiting distribution for which all variables are independent, the
variables {yj, j=1, 2,...} are i.i.d, exponentially distributed with average
a= 1

2l , and the variables {bj, j=1, 2,...} are i.i.d., uniformly distributed on
[−1, 1].

It is worth to spend a few words to explain the main ideas of the proof
in ref. 7. The first step is based on the construction of a ‘‘good set’’ of
configurations w, which are, roughly speaking, those for which the joint
distribution function of y1 and b1 differs (in the sense of the sup norm)
from the limiting distribution by a quantity that vanishes as aQ 0, i.e.,

3w: sup
t > 0, y ¥ [−1, 1]

: mE(k: ywa (q, k) [ t, bwa (q, k) [ y)−(1−e−2lt)
1+y
2
: < ag4

(2)

for some conveniently small g > 0. The crucial point is that the measure of
the ‘‘bad set,’’ complement of the set above, due to the properties of the
Poisson process, has a quasi-exponential decay, i.e., under the condition
that there is no scatterer at a distance less than ab from q, for some conve-
nient b ¥ (0, 1), the measure of the bad set vanishes as exp(−oa−d), for
some d, o > 0. (The same would hold if, instead of the Poisson measure, we
take a Gibbs state with exponential decay of correlations.) One then gets
almost-sure convergence by a Borel–Cantelli argument.
The quasi-exponential decay allows to extend the result to a suffi-

ciently dense set of bundles or more generally of ‘‘increasing curves’’
(growing in numbers as an inverse power of a). The Markov property
is proved by showing that the images of the connected parts of the first
collision map are close to the increasing curves of that set, and that the
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distribution of flight length y and impact parameter b is close to the limit-
ing distribution.
The discrete-time limiting Markov process, with state space M,

implied by Proposition 1, is easily described. Taking into account relation
(1) we see that the transition measure P(q, k; dq − dk −) and the correspond-
ing forward operator are given by

F P(q, k; dq − dk −) f(q −, h −)=F
S1
dk − k(k−k −) F

.

0

ds
a
e−

s
af(q+sk

¯
, k −),

where k(k)=1
4 sin

|k|
2 is the angular kernel.

In dealing with the bounded case we consider in the mesoscopic
picture the circle Ka −1R with center at the origin and radius a−1R, and, if we
want to keep w ¥ W fixed we assume that all scatteres outside of the circle
Ka −1R are ‘‘switched off,’’ i.e., the particle escapes by getting through them.
As aQ 0 more and more scatterers are ‘‘switched on’’ by getting inside
Ka −1R. Denoting escape through the border of Ka −1R by the absorbing state 0̄,
we have as state space for the limiting process MR=KR×S1 2 0̄. Conver-
gence to the limiting process is done exactly as for the unbounded case:
in fact for all finite a the transition densities of the bounded open system
are the same as for the unbounded system, as long as the trajectory stays
in Ka −1R, and the probability of getting out of Ka −1R starting from
a−1q ¥Ka −1R is also computed in terms of the unbounded process and has a
limit PR(q, k; 0̄), as aQ 0, by Proposition 1. It follows that the limiting
discrete process for the bounded case has a transition measure PR and a
forward operator given by

F
MR
PR(x; dx −) f(x −)

=F
KR ×S

1
P(q, k; dq − dk −) f(q −, k −)+PR(q, k; 0̄) f(0̄)

=F
S1
dk − k(k−k −) F

dR(q, k)

0

ds
a
e−

s
af(q+sk

¯
, k −)+e−

dR(q, k)

a f(0̄). (3)

Here x is the variable onMR, and the expression of the distance dR(q, k) of
the point q from the border in the direction k, adopting polar coordinates
q=r(cos h, sin h), is dR(q, k)=−r cos(k−h)+`R2−r2 sin2(k−h). The
fact that 0̄ is absorbing is expressed by the additional relation PR(0̄; 0̄)=1.
Going back to the dynamical system, we introduce the ‘‘stretching

factor,’’ expressing the dilation of an infinitesimal bundle of trajectories up
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to the finite (macroscopic) time t. If (q, k) is the initial point and o0 is the
initial curvature this is expressed by the integral (see ref. 10)

l ta((q, k); w)=
a
t
F
a −1t

0
o(Ts(q, k)) ds, (4)

where o denotes the curvature, and is computed by the following rules.
During free flight the curvature radius grows linearly in t, and, denoting,
for short, o(s)=o(Ts(q, k)), if there is no collision in the time interval
(s0, s] we have o(s)=o(s0)(1+(s−s0) o(s0))−1. At collision the curvature
undergoes a jump, depending on the angle f between the velocity of the
particle and the outward normal of the scatterer at the collision point.
Denoting by o− and o+ the curvatures before and after collision we have
the well known formulas

o+j=o−j +
2

a cos fj
o−j=

o+j−1
1+a−1yjo

+
j−1

. (5)

Going over to the discrete picture, we write the stretching factor up to
the nth (mesoscopic) collision time tn:

lna=
a
n
F
tn

0
o(Ts) ds=

a
n
5L1a+C

n

j=1
L ja6 (6a)

with

L1a=log(1+a
−1y1o0), L ja=log(1+a

−1yjo
+
j−1), j > 1. (6b)

Using relations (5) it is easy to see that the terms L ja can be written as

L ja=2 log
1
a
+log 1 2yj

cos fj−1
+a2tj 2 , tj=1+

yj

yj−1

a−1yj−1o
+
j−2

1+a−1yj−1o
+
j−2

.

We consider the asymptotics of this quantity for n fixed and aQ 0. We
need integrability (uniform in a) of the quantities log yj and logcos fj, with
respect to the distribution induced by the normalized Lebesgue mesure mE
on the small bundle DE (or by similar mesures on an ‘‘increasing curve’’) for
almost all w ¥ W. This does not follow directly from the proofs in ref. 7, but
could be proved with the same methods. For instance, one would need to
estimate the probability of a ‘‘bad set,’’ analogous to the complement of
the set (2), for which |mE(k: y

w
a > t)−e

−2lt| > r(t) ag, where r(t) is a decreas-
ing integrable function. A complete proof of such results will be published
in a future paper.
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Taking integrability for granted, by the Lebesgue dominated function
theorem and the inequality log(g+st) [ log(1+s)+|log t− log g|, valid for
all positive t, s, g, we get the following result.

Proposition 2. As aQ 0, for each fixed n, and almost all w ¥ W, the
following asymptotics holds

lna ’ a 512−
1
n
2 log 1

a
− log 2+

log o0

n
+
1
n

C
n

j=1
log yj−

1
n

C
n

j=1
log(cos fj−1)6 ,

(7)

in the sense that the difference is o(a) in L1(mE).

Proposition 2 gives the Boltzmann–Grad limit of the stretching
factors, for finite times, and it would not be hard to give the corresponding
expression for continuous (macroscopic) times. As the limiting distribution
of all quantities in the expression (7) is known, and is given by the limiting
Markov process, we can proceed to compute the asymptotics for large
times, by taking nQ., which should give a kind of Lyapunov exponent in
the BG limit. As all quantities yj and cos fj=`1−b

2
j are independent,

a simple application of the law of large numbers gives the asymptotics for
large n in the BG limit:

lna ’ a 52 log
1
a
+log a+1− c+O 1 1

`n
26 , (8a)

where c denotes the Euler constant.
Taking into account that in the limiting process the ratio ntt , where nt is

the number of collisions up to time t, tends to 1
a
, where a is the free flight

length, we find the asymptotics as tQ. of the continuous time stretching
factor (4):

l ta ’
a
a

52 log 1
a
+log a+1− c+O 1 1

`n
26 . (8b)

This expression coincides with the asymptotics found in ref. 11 for the
Lyapunov exponent of the periodic Lorentz gas in the limit as the scatter
radius vanishes, an indication that, in spite of the fact that we have
inverted the limiting procedures, by taking first aQ 0 and then tQ., the
expression (8b) gives the correct asymptotics of the Lyapunov exponents of
the Lorentz gas with random scatterers.
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3. QUASI-STATIONARY MEASURES FOR THE BOUNDED

OPEN CASE

We now consider the discrete-time limiting process in the circle KR
with forward operator given by Eq. (3). Mass is lost across the border
(represented by the absorbing state 0̄), so that there is no positive invariant
probability measure. It is however to be expected that, starting with some
initial ‘‘nice’’ probability measure, as time goes on, a kind of stationary
regime sets in, in the sense that if one considers the sequence of probability
measures obtained by applying the evolution operator, under the condition
that the process has not been absorbed (i.e., dividing by the total mass that
is left), one gets to a quasi-stationary measure which is invariant under
such procedure.
Unfortunately we do not know of any results on existence, uniqueness

and convergence to the limiting distribution that can be applied to our
case. Rigorous results up to now have been proved only for the case of
discrete state space (see, e.g., ref. 12). In such cases it can be seen that a
condition for existence is ‘‘exponential absorption,’’ i.e., if T is the absorp-
tion time, then for some l > 0 the conditional expectation of elT under the
condition that x is the starting point, is finite, i.e., ExelT <., for all x. This
is certainly true in our case, and we hope to be able to prove rigorous
results in the future. What we can do now is to write down the eigenvalue
equation for the quasi-invariant (q.i.) measure, and, under some appropri-
ate assumptions, find out some properties of the solution.
We are mainly interested in knowing how the asymptotics of the

stretching factor is modified in the finite open case. It is clear that the
discrete-time stretching factor will always be given by the expression (7),
but the continuous time stretching factor will differ from expression (8b),
because the mean free path will not be equal to a, but is replaced by an
average on the quasi-stationary measure, and will be smaller. We consider
the case of a circle KR of radius R, and, under some reasonable assump-
tions, we find the asymptotic behavior of the escape rate (logarithm of
the fraction of mass that escapes) and of the quasi-invariant (R-rescaled)
measure for large R. In order to compute the correction to the free flight
length we would need however the corrections of order 1R to the limiting
quasi-invariant measure, which is again the object of further work.
At the end of the section we will show how one can give a rigorous

solution to the problem of finding out the asymptotics of the quasi-sta-
tionary measure in a 1-dimensional model.
We go back to the process with forward operator given by Eq. (3),

and look for a quasi-stationary probability measure with smooth density
f(q, k). It is natural to assume that the solution belongs to the class V of
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the rotation invariant functions, i.e., of the functions that, going over to
polar coordinates q=r(cos h, sin h) depend on r and cos(k−h) only. Both
the operator in (3) and the corresponding backward operator map the class
V into itself. If b(R) is the total mass that is left in MR, we see that the
equation for the quasi-stationary measure is

F
S1
k(k−k −) dk − F

ds
a
e−

s
af(q−sk

¯

−, k −) qKR (q−sk
¯

−)=b(R) f(q, k), (9a)

where qKR denotes the indicator function. b(R) is connected to the contin-
uous-time escape rate which is used in the physical literature. We prefer a
discrete-time formulation which leads to a mathematically well defined
eigenvalue problem.
Consider the space Fourier transform f̂(l, k)=>KR e

i(l, q)f(q, k) dq.
As f ¥ V we write from now on f(r, cos(k−h)), and the Fourier transform
f̂ is also a function in V, which, in polar coordinates l=|l| (cos h, sin h),
can be written as f̂(|l|, cos(k−h)). After some tedious calculations, setting
l=|l|, we see that f̂ satisfies the following eigenvalue equation

F
S1
k(k−k −) g(l, cos k −) f̂(l, cos k −) dk −−S(l, k)=b(R) f̂(l, cos k),

(9b)

where g(l, cos u)= 1
1−ia l cos u comes from the transition kernel. The function

S needs some accurate computation. Expressing l in polar coordinates and
setting k̂=k−h, D(r)=e−r/a

ar , we have

S(|l|, k̂)=F
KcR
dy e i(l, y) F

KR
dx k(h−arg(y−x)) D(|y−x|) f(x, arg(y−x))

=F
.

R
r dr F du e i |l| r cos u

×F
R

0
r dr F df k(k̂−u−w(f)) D(r, r, f) f(r, cos wg(f)).

Here the new variables are: u is the anomaly of y, f is the angle between
y and x, wg(f) is the angle between y−x and x, and w(f)=wg(f)−f.
Taking into account that

F du k(h−u) e ia cos u=J0(a)+2 C
.

k=1
iklk Jk(a) cos kh
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where the functions {cos kh}.k=0 are eigenfunctions of the angular operator
with kernel k( · ), lk=(1−4k2)−1 the corresponding eigenvalues, and Jk are
the Bessel functions, we get the Fourier expansion S(l, h)=;.

k=0 i
kSk(l)

× cos kh where

S0(l)=F
.

R
r dr m (0)R (r) J0(lr), Sk(l)=2lk F

.

R
r dr m (k)R (r) Jk(lr),

m (k)R (r)=F
R

0
r dr F df D(r, r, f) cos[kw(f)] f(r, cos[wg(f)]).

(10)

Introducing the Fourier expansion for f: f(r, cos k)=;.

k=0 fk(r) cos kk,
we find for f̂

f̂(l, cos k)=C
.

j=1
ikf̂k(l) cos kk, f̂k(l)=2p F

R

0
r dr fk(r) Jk(lr). (11a)

The expansion for g(l, cos k) is

g(l, cos k)=C
.

j=1
(−ila)k gk(la) cos kk, (11b)

where it can be seen that gk(0)=1. Observe that the first component of g is
the Fourier transform of the averaged (over angles) transition probability:

g0(|l|)=
1
2p

F
dh

1+a2 |l|2 cos2 h
=
1
2p

F
R2
e i(l, x)

e−
|x|
a

a |x|
dx=

1

`1+a2 |l|2
.

Taking into account that all components Sk and f̂k vanish for l=0 if k > 0,
and that the normalization condition for the measure gives f̂0(0)=

1
2p we

find that

1−b(R)=2pS0(0)=2p F
.

R
r dr m (0)R (r). (12)

Inserting the Fourier expansions in the main equation (9b) we get a
sequence of equations for the components f̂k(l), which are coupled, due
to the integral term. From now on we consider the rescaled density
f (R)(x, k)=R2f(Rx, k), which is defined in the unit circle x ¥K1, in the
asymptotic regime of large R. The Fourier transform of f (R) is f̂ (R)(l, k)=
f̂( lR , k), and we have just to replace l by lR in Eq. (9b). We first write the
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components of Sk(
l
R) in a convenient way. Observe that, for all k \ 0,

|m (k)R (r)| [ m
(0)
R (r), and using the normalization condition (12) we see that

2p
1−b(R)

F
.

R
r dr m (k)R (r) Jk 1

rl
R
2=ckJk 1 l 11+

sk
R
22 ,

where |ck | [ 1, and, by the property of rapid decay of the density measure
for large r−R, due to the exponential factor D(r, r, f), one can assume
(and will have to prove in a rigorous analysis) that the quantities sk stay
bounded as R grows, no matter what the unknown density f (R) (which
appears in m (0)R (r)) is.
Setting lg

k=−lk > 0 for k > 0 we see that Eq. (9b) is equivalent to the
following system of infinite coupled equations

2p F dk g 1 l
R
, cos k2 f̂ (R)(l, cos k)−b(R) f̂ (R)0 (l)

=(1−b(R)) J0 1 l 11+
s0
R
22

F dk cos kkg 1 l
R
, cos k2 f̂ (R)(l, cos k)+

b(R)
lg
k

f̂ (R)k (l)

=(1−b(R)) cg
k Jk 1 l 11+

sk
R
22 , k > 0,

where, according to the assumptions above, the numbers cg
k and sk are

bounded, for bounded l, uniformly in R. The expansion (11b), with l
replaced by lR , when inserted in (9b) allows to express the left sides of the
equations above as a sum of contributions of different orders in R−1. We
write down the first two:

2p 11g0 1
l
R
2−b(R)2 f̂(R)0 (l)+

a l
2R
g1 1
l
R
2 f̂(R)1 (l)+

a
2 l2

2R2
g2 1
l
R
2 f̂(R)2 (l)+· · ·2

=(1−b(R)) J0 1 l 11+
s0
R
22 (13a)

f̂ (R)1 (l)1g0 1
l
R
2+b(R)

lg
1

2+a l
R
g1 1
l
R
21 f̂ (R)2 (l)

2
−f̂ (R)0 (l)2

+
a
2 l2

R2
g2 1
l
R
2(f̂ (R)3 (l)− f̂ (R)1 (l))+· · ·

=(1−b(R)) cg
1J1 1 l 11+

s1
R
22 . (13b)
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The left hand side of the equations for k > 1 has the same structure as
(13b), and it would not be hard to give the general form. In particular they
start with a term f̂ (R)k (l)(g0(

l
R)+

b(R)

lgk
), which should be of the same order as

the right term, which is (1−b(R)) times a function that is bounded for
bounded l, uniformly in R. As g0 > 0, the eigenvalue b(R)Q 1 for large R,
and lg

k > 1, f̂
(R)
k (l) should be at least of the same order of smallness as

1−b(R).
On the basis of such analysis one can see that a consistent scaling limit

exists with 1−b(R) ’ o

R2
, f̂ (R)0 (a) ’ f̄0(a), f̂

(R)
1 (a) ’

1
R f̄1(a), and f̂

(R)
k (a) ’

1
R2
f̄k(a) for k > 1. Substituting into Eq. (13b), setting f̄

(R)
1 (l)=Rf̂

(R)
1 (l),

taking into account that lg
1=

1
3 we get, as RQ., the relation

f̄ (R)1 (l)1g0 1
l
R
2+3b(R)2−lag1 1

l
R
2 f̂ (R)0 (l)=O 1

1
R
2 . (14)

Taking the limit as RQ. we obtain for the limiting functions the equality
f̄1(l)=

la
4 f̄0(l). Plugging Eq. (14) into Eq. (13a), we see after some simple

manipulations that

2p 1g0 l 1
l
R
2−b(R)+

l2a2

8R2
2 f̂ (R)0 (l)+O 1

1
R3
2

=(1−b(R)) J0 1 l 11+
s0
R
22 . (15)

As s0 is positive and bounded, it is easily seen that the Bessel function on
the right, which starts with positive values for small l, has a simple zero at
some point lg < t1, lg=t1+O(

1
R), where t1 is the first zero of J0. As we are

looking for a nondegenerate asymptotic solution that is not concentrated
on the border of K1, we can safely assume that f̂

(R)
0 (l) is positive and uni-

formly (in R) bounded away from 0 in a neighborhood of t1. Hence, by a
simple computation, taking into account that 1−g0(

l
R) ’

a
2 l2

2R2
, we find

1−b(R)=
3t21a

2

8R2
11+O 1 1

R
22 . (16)

Going back to Eq. (15) we find the asymptotics of the first two components
f̂ (R)0 and f̂

(R)
1 of the asymptotic quasi-stationary measure:

lim
RQ.

f̂ (R)0 (l)=
1

2p

J0(l)

1− l
2

t
2
1

, f̂ (R)1 (l) ’
la

8pR

J0(l)

1− l
2

t
2
1

. (17)
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This result implies that the rescaled measure f (R)(x, k) has a limit as
RQ. which is of the type NJ0(t1 |x|), where N is a normalization con-
stant. Relations (17) are however not enough to compute the corrections
of order 1R to the average free flight, as one would need the corrections of
order 1R to the asymptotics of f

(R)
0 (l), and this could be done only by getting

more information on the asymptotic behavior of the quantity s0 appearing
in Eq. (13a). This is, as we said, a task for future work.
The asymptotic expansion of the escape rate given by Eq. (16) is in

agreement with the results of ref. 8, obtained with a completely different
approach, based on the analysis of an ‘‘extended Lorentz–Boltzmann
equation.’’ In terms of the physical quantities introduced in that paper,
relation (16) can be reformulated by saying that the (continuous time)
escape rate is c=1−b

a
=Dt21a, where D is interpreted as the diffusion coef-

ficient. We are not able however to compare with the higher order expan-
sion of the density function obtained in ref. 8, and in particular we cannot
say anything at the present stage about the contribution of boundary layer
terms to higher orders.
We conclude this section by showing how, by applying the main ideas

of the procedure sketched above, one can give a rigorous solution to the
problem of finding the needed asymptotics of the quasi-stationary measure
in a one-dimensional caricature.
Consider the discrete process on R with symmetric exponential jump

distribution p(x)= 1
2a e

− |x|
a , where a is the free flight length. We consider the

equation for the quasi-stationary measure in an interval IR=[−R, R],
the density of which is denoted by f, normalized as >R−R f(x) dx=1. The
equation is

(Pgf)(x)=F
R

−R
f(y) p(x−y) dy=b(R) f(x), x ¥ [−R, R]. (18)

The following theorem holds.

Theorem 1. For allR there is a unique positive solution f¥ L2[−R,R]
of the eigenvalue problem (18) with maximal positive eigenvalue b(R).
Moreover f is differentiable, and the following asymptotics holds as
RQ. for the eigenvalue b(R) and the rescaled eigenfunction f (R)(x)=
Rf(Rx), x ¥ [−1, 1]

1−b(R)=
p2a2

4R2
11+O 1 1

R
22 (19a)

f (R)(x)=
p

4
cos

px
2
+

pa

4R
1px
2
sin

px
2
− cos

px
2
2+O 1 1

R2
2 . (19b)
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Proof. The fact that there is a unique positive eigenfunction in
L2[−R, R] with maximal positive eigenvalue follows from classical
theorems (see ref. 13, Section 7). As the kernel is a.s. differentiable with
bounded derivative, so is f. Moreover, as the integration kernel leaves the
subspaces of the even (in x) and odd functions invariant, f has to be even.
Going over to the Fourier transform f̂(l)=>IR e

ilxf(x) dx, Eq. (18)
becomes

b(R) f̂(l)=p̃(l) f̂(l)−F
.

0
AR(s) cos(l(R+s)) ds, (20a)

where p̃(l)= 1
1+l2a2

is the Fourier transform of the jump distribution p(x),
and

AR(s)=F
2R

0
dv f(R−v) p+(v+s), p+(s)=

1
a
e−

s
a, s > 0.

AR is the density of the mass that gets out and p+ is the one-sided jump
distribution. Taking l=0 in Eq. (20a) we get the relation

1−b(R)=F
.

0
AR(s) ds=F

2R

0
dv f(R−v) e−

v
a,

expressing the fact that the total mass getting out of IR is 1−b(R). For the
normalized density we find that aR(s)=

AR(s)
1−b(R)=p+(s), and we see that it

does not depend on f.
Going over to the rescaled density, which has Fourier transform

f̂ (R)(l)=f̂( lR), Eq. (20a) becomes

f̂ (R)(l)1 p̃ 1 l
R
2−b(R)2=(1−b(R)) F

.

0
cos 1l 11+s

R
22 1
a
e−

s
a ds. (20b)

Introducing the Fourier transform p̃g(l)=
1
1− al of p+, we see that the

integral on the right side can be written as

Re 5e ilp̃+ 1
l

R
26=cos l− laR sin l

1+l
2a2

R2

,

which vanishes if l=lg, where lg is a solution of the equation cos l=
la

R sin l. A simple calculation shows that for large R we have lg=
p

2(1+ aR)
+

O( 1
R3
). As f̂ (R)(l) cannot vanish for l < p2 we see that b(R)=p̃(lgR ), which

gives immediately the asymptotics (19a).

Estimates for 2D Infinite and Bounded Dilute Random Lorentz Gases 743



Equation (20b) can now be solved for f̂ (R)(l), which turns out to be

f̂ (R)(l)=
l2g

l2g−l2
1cos l−

la

R
sin l2 . (21a)

The inverse Fourier transform can be computed as a residue integral,
and gives

f (R)(x)=
lg sin lg

2
11+a

2l2g
R2
2 cos lgx, |x| [ 1, (21b)

and, of course, f (R)(x)=0 is |x| > 1. By expanding lg in inverse powers of
R we get the asymptotics (19b).
Theorem 1 is proved.

It is worth to remark that the quasi-stationary density (21b) is discon-
tinuous at the border points x=±1, where it has a jump of order 1R , more
precisely it can be seen that f (R)(±1)=p

2
a

8R+O(
1
R2
).

Note that the asymptotic behavior of the measure, as for the Lorentz
gas, has a leading term that does not depend on the particular distribution
(i.e., in this case, on a), whereas the correction of order 1R depends on it.
This seems to be a general fact.
In the 1-dimensional case, if the distribution is not exponential, the

problem is more complicated, as one has to investigate the asymptotic
properties of the measure aR(s), which would depend on the density f
itself.
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